On exact solutions of a class of fractional Euler–Lagrange equations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On exact solutions of a class of fractional Euler-Lagrange equations

In this paper, first a class of fractional differential equations are obtained by using the fractional variational principles. We find a fractional Lagrangian L(x(t), where aD α t x(t)) and 0 < α < 1, such that the following is the corresponding Euler-Lagrange tD α b ( c aD α t )x(t) + b(t, x(t))( c aD α t x(t)) + f(t, x(t)) = 0. (1) At last, exact solutions for some Euler-Lagrange equations ar...

متن کامل

Exact and numerical solutions of linear and non-linear systems of fractional partial differential equations

The present study introduces a new technique of homotopy perturbation method for the solution of systems of fractional partial differential equations. The proposed scheme is based on Laplace transform and new homotopy perturbation methods. The fractional derivatives are considered in Caputo sense. To illustrate the ability and reliability of the method some examples are provided. The results ob...

متن کامل

On the existence of nonnegative solutions for a class of fractional boundary value problems

‎In this paper‎, ‎we provide sufficient conditions for the existence of nonnegative solutions of a boundary value problem for a fractional order differential equation‎. ‎By applying Kranoselskii`s fixed--point theorem in a cone‎, ‎first we prove the existence of solutions of an auxiliary BVP formulated by truncating the response function‎. ‎Then the Arzela--Ascoli theorem is used to take $C^1$ ...

متن کامل

New exact solutions of differential equations derived by fractional calculus

and integral calculus from integer orders n to the entire complex plane. Methods are presented for using this generalized calculus with Laplace transforms of complex-order derivatives to solve analytically many differential equations in physics, facilitate numerical computations, and generate new infinite-series representations of functions. As examples, new exact analytic solutions of differen...

متن کامل

ON THE PERIODIC SOLUTIONS OF A CLASS OF nTH ORDER NONLINEAR DIFFERENTIAL EQUATIONS *

The nth order differential equation x + c (t )x + ƒ( t,x) = e(t),n>3 is considered. Using the Leray-Schauder principle, it is shown that under certain conditions on the functions involved, this equation possesses a periodic solution.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinear Dynamics

سال: 2007

ISSN: 0924-090X,1573-269X

DOI: 10.1007/s11071-007-9281-7